
www.manaraa.com

Argon: performance insulation for shared storage servers
Matthew Wachs, Michael Abd-El-Malek, Eno Thereska, Gregory R. Ganger

Carnegie Mellon University

Abstract

Services that share a storage system should realize the
same efficiency, within their share of time, as when they
have the system to themselves. The Argon storage server
explicitly manages its resources to bound the inefficiency
arising from inter-service disk and cache interference in
traditional systems. The goal is to provide each ser-
vice with at least a configured fraction (e.g., 0.9) of the
throughput it achieves when it has the storage server to
itself, within its share of the server—a service allocated
1�nth of a server should get nearly 1�nth (or more) of the
throughput it would get alone. Argon uses automatically-
configured prefetch/write-back sizes to insulate stream-
ing efficiency from disk seeks introduced by competing
workloads. It uses explicit disk time quanta to do the
same for non-streaming workloads with internal local-
ity. It partitions the cache among services, based on their
observed access patterns, to insulate the hit rate each
achieves from the access patterns of others. Experiments
show that, combined, these mechanisms and Argon’s au-
tomatic configuration of each achieve the insulation goal.

1 Introduction

Aggregating services onto shared infrastructures, rather
than using separate physical resources for each, is a long-
standing approach to reducing hardware and adminis-
tration costs. It reduces the number of distinct systems
that must be managed and allows excess resources to be
shared among bursty services. Combined with virtual-
ization, such aggregation strengthens notions such as ser-
vice outsourcing and utility computing.

When multiple services use the same server, each ob-
viously gets only a fraction of the server’s resources
and, if continuously busy, achieves a fraction of its peak
throughput. But, each service should be able to use its
fraction of resources with the same efficiency as when
run alone; that is, there should be minimal interference.
For resources like the CPU and network, time-sharing
creates only minor interference. For the two primary
storage system resources — disk head time and cache
space — this is not the case.

Disks involve mechanical motion in servicing requests,
and moving a disk head from one region to another is

slow. The worst-case scenario is when two sequential
access patterns become tightly interleaved causing the
disk head to bounce between two regions of the disk;
performance goes from streaming disk bandwidth to that
of a random-access workload. Likewise, cache misses
are two orders of magnitude less efficient than cache
hits. Without proper cache partitioning, it is easy for one
data-intensive service to dominate the cache with a large
footprint, significantly reducing the hit rates of other ser-
vices. Two consequences of disk and cache interference
are significant performance degradation and lack of per-
formance predictability. As a result, interference con-
cerns compel many administrators to statically partition
storage infrastructures among services.

This paper describes mechanisms that together mitigate
these interference issues, insulating1 services that share
a storage system from one another’s presence. The goal
is to maintain each service’s efficiency within a config-
urable fraction (e.g., 0.9) of the efficiency it achieves
when it has the storage server to itself, regardless of what
other services share the server. We call this fraction the
R-value, drawing on the analogy of the thermal resis-
tance measure in building insulation. With an R-value
of 1.0, sharing affects the portion of server time dedi-
cated to a service, but not the service’s efficiency within
that portion. Additionally, insulation increases the pre-
dictability of service performance in the face of sharing.

The Argon storage server combines three mechanisms
plus automated configuration to achieve the above goal.
First, detecting sequential streams and using sufficiently
large prefetching/write-back ranges amortizes position-
ing costs to achieve the configured R-value of streaming
bandwidth. Second, explicit cache partitioning prevents
any one service from squeezing out others. To maximize
the value of available cache space, the space allocated
to each service is set to the minimum amount required
to achieve the configured R-value of its standalone effi-
ciency. For example, a service that streams large files and
exhibits no reuse hits only requires enough cache space
to buffer its prefetched data. On-line cache simulation is
used to determine the required cache space. Third, disk
time quanta are used to separate the disk I/O of services,

1We use the term “insulate,” rather than “isolate,” because a ser-
vice’s performance will obviously depend on the fraction of resources
it receives and, thus, on the presence of other services. But, ideally, its
efficiency will not.

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 61

www.manaraa.com

eliminating interference that arises from workload mix-
ing. The length of each quantum is determined by Argon
to achieve the configured R-value, and average response
time is kept low by improving overall server efficiency.

Experiments with both Linux and pre-insulation Argon
confirm the significant efficiency losses that can arise
from inter-workload interference. With its insulation
mechanisms enabled, measurements show that Argon
mitigates these losses and consistently provides each ser-
vice with at least the configured R-value of unshared ef-
ficiency. For example, when configured with an R-value
of 0.95 and simultaneously serving OLTP (TPC-C) and
decision support (TPC-H Query 3) workloads, Argon’s
insulation more than doubles performance for both work-
loads. Workload combinations that cannot be sufficiently
insulated, such as two workloads that require the entire
cache capacity to perform well, can be identified soon
after an unsupportable workload is added.

This paper makes four main contributions. First, it clari-
fies the importance of insulation in systems that desire
efficient and predictable performance for services that
share a storage server. Second, it identifies and exper-
imentally demonstrates the disk and cache interference
issues that arise in traditional shared storage. Third, it de-
scribes mechanisms that collectively mitigate them. Al-
though each mechanism is known, their application to
performance insulation, their inter-relationships, and au-
tomated configuration to insulation targets have not been
previously explored. Fourth, it experimentally demon-
strates their effectiveness in providing performance insu-
lation for shared storage. Overall, the paper shows that
Argon provides an important and effective foundation for
predictable shared storage.

2 Motivation and related work

Administration costs push for using shared storage in-
frastructures to support multiple activities/services rather
than having separate infrastructures. This section ex-
pands on the benefits of shared storage, describes the in-
terference issues that arise during sharing, and discusses
previous work on relevant mechanisms and problems.
The next section discusses Argon’s mechanisms for in-
sulating against such interference.

2.1 Why shared storage?

Many IT organizations support multiple activi-
ties/services, such as financial databases, software
development, and email. Although many organizations
maintain distinct storage infrastructures for each activ-
ity/service, using a single shared infrastructure can be

much more cost-effective. Not only does it reduce the
number of distinct systems that must be purchased and
supported, it simplifies several aspects of administration.
For example, a given amount of excess resources can
easily be made available for growth or bursts in any
one of the services, rather than having to be partitioned
statically among separate infrastructures (and then
moved as needed by administrators). One service’s
bursts can use excess resources from others that are
not currently operating at peak load, smoothing out
burstiness across the shared infrastructure. Similarly,
on-line spare components can also be shared rather than
partitioned, reducing the speed with which replacements
must be deployed to avoid possible outages.

2.2 Interference in shared storage

When services share an infrastructure, they naturally will
each receive only a fraction of its resources. For non-
storage resources like CPU time and network bandwidth,
well-established resource management mechanisms can
support time-sharing with minimal inefficiency from in-
terference and context switching [4, 26]. For the two
primary storage system resources, however, this is not
the case. Traditional free-for-all disk head and cache
management policies can result in significant efficiency
degradations when these resources are shared by multi-
ple services. That is, interleaving multiple access pat-
terns can result in considerably less efficient request pro-
cessing for each access pattern. Such loss of efficiency
results in poor performance for each workload and for the
overall system — with fair sharing, for example, each of
two services should each achieve at least half the perfor-
mance they experience when not sharing, but efficiency
losses can result in much lower performance for both.
Further, the service efficiency is determined by the ac-
tivities of all workloads sharing a server, making perfor-
mance unpredictable (even if proportional shares are en-
sured) and complicating dataset assignment tasks.

Disk head interference: Disk head efficiency can be de-
fined as the fraction of the average disk request’s service
time spent transferring data to or from the magnetic me-
dia. The best case, sequential streaming, achieves disk
head efficiency of approximately 0.9, falling below 1.0
because no data is transferred when switching from one
track to the next [28]. Non-streaming access patterns can
achieve efficiencies well below 0.1, as seek time and ro-
tational latency dominate data transfer time. For exam-
ple, a disk with an average seek time of 5 ms that rotates
at 10,000 RPMs would provide an efficiency of �0.015
for random-access 8 KB requests (assuming 400 KB per
track). Improved locality (e.g., cutting seek distances in
half) might raise this value to �0.02.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association62

www.manaraa.com

Interleaving the access patterns of multiple services can
reduce disk head efficiency dramatically if doing so
breaks up sequential streaming. This often happens to
a sequential access pattern that shares storage with any
other access pattern(s), sequential or otherwise. Almost
all sequential patterns arrive one request at a time, leav-
ing the disk scheduler with only other services’ requests
immediately after completing one from the sequential
pattern. The scheduler’s choice of another service’s ac-
cess will incur a positioning delay and, more germane
to this discussion, so will the next request from the se-
quential pattern. If this occurs repeatedly, the sequential
pattern’s disk head efficiency can drop by an order of
magnitude or more.

Most systems use prefetching and write-back for sequen-
tial patterns. Not only can this serve to hide disk access
times from applications, it can be used to convert se-
quences of small requests into fewer, larger requests. The
larger requests amortize positioning delays over more
data transfer, increasing disk head efficiency if the se-
quential pattern is interleaved with other requests. Al-
though this helps, most systems do not prefetch aggres-
sively enough to achieve performance insulation [24, 28]
— for example, the 64 KB prefetch size common in
many operating systems (e.g., BSD and Linux) raises ef-
ficiency from �0.015 to �0.11 when sequential work-
loads share a disk, which is still far below the streaming
bandwidth efficiency of �0.9. More aggressive use of
prefetching and write-back aggregation is one tool used
by Argon for performance insulation.

Cache interference: For some applications, a crucial de-
terminant of storage performance is the cache. Given
the scale of mechanical positioning delays, cache hits are
several orders of magnitude faster than misses. Also, a
cache hit uses no disk head time, reducing disk head in-
terference.

With traditional cache eviction policies, it is easy for one
service’s workload to get an unfair share of the cache ca-
pacity, preventing others from achieving their appropri-
ate cache hit rates. Regardless of which cache eviction
policy is used, there will exist certain workloads that fill
the cache, due to their locality (recency- or frequency-
based) or their request rate. The result can be a signifi-
cant reduction in the cache hit rate for the other work-
loads’ reads, and thus much lower efficiency if these
workloads depend upon the cache for their performance.

In addition to efficiency consequences for reads, unfair-
ness can arise with write-back caching. A write-back
cache decouples write requests from the subsequent disk
writes. Since writes go into the cache immediately, it is
easy for a service that writes large quantities of data to
fill the cache with its dirty blocks. In addition to reduc-

ing other services’ cache hit ratios, this can increase the
visible work required to complete each miss — when the
cache is full of dirty blocks, data must be written out to
create free buffers before the next read or write can be
serviced.

2.3 Related work

Argon adapts, extends, and applies some existing mecha-
nisms to provide performance insulation for shared stor-
age servers. This section discusses previous work on
these mechanisms and on similar problems in related do-
mains.

Storage resource management: Most file systems
prefetch data for sequentially-accessed files. In addi-
tion to hiding some disk access delays from applica-
tions, accessing data in larger chunks amortizes seeks
over larger data transfers when the sequential access pat-
tern is interleaved with others. A key decision is how
much data to prefetch [25]. The popular 64 KB prefetch
size was appropriate more than a decade ago [21], but
is now insufficient [24, 28]. Similar issues are involved
in syncing data from the write-back cache, but without
the uncertainty of prefetching. Argon complements tra-
ditional prefetch/write-back with automated determina-
tion of sizes so as to achieve a tunable fraction (e.g., 0.9)
of standalone streaming efficiency.

Schindler et al. [27, 28] show how to obtain and ex-
ploit underlying disk characteristics to achieve good per-
formance with certain workload mixes. In particular,
that work shows that, by accessing data in track-sized
track-aligned extents, one can achieve a large fraction
of streaming disk bandwidth even when interleaving a
sequential workload with other workloads. Such disk-
specific mechanisms are orthogonal and could be added
to Argon to reduce prefetch/write-back sizes.

Most database systems explicitly manage their caches in
order to maximize their effectiveness in the face of inter-
leaved queries [11, 15, 27]. A query optimizer, for exam-
ple, can use knowledge of query access patterns to allo-
cate for each query just the number of cache pages that it
estimates are needed to achieve the best performance for
that query [15]. Cao et al. [7, 8] show how these ideas
can also be applied to file systems in their exploration
of application-controlled file caching. In other work,
the TIP [25] system assumes application-provided hints
about future accesses and divides the filesystem cache
into three partitions that are used for read prefetching,
caching hinted blocks for reuse, and caching unhinted
blocks for reuse. Argon uses cache partitioning, but with
a focus on performance insulation rather than overall per-
formance and without assuming prior knowledge of ac-
cess patterns. Instead, Argon automatically discovers the

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 63

www.manaraa.com

necessary cache partition size for each service based on
its access pattern.

Resource provisioning in shared infrastructures: De-
ploying multiple services in a shared infrastructure is a
popular concept, being developed and utilized by many.
For example, DDSD[39] and Oceano[3] are systems that
dynamically assign resources to services as demand fluc-
tuates, based on SLAs and static administrator-set prior-
ities, respectively. Resource assignment is done at the
server granularity: at any time, only one service is as-
signed to any server. Subsequent resource provision-
ing research ([10, 13, 34, 35]) allows services to share
a server, but relies on orthogonal research for assistance
with performance insulation.

Most previous QoS and proportional sharing research
has focused on resources other than storage. For ex-
ample, resource containers [4] and virtual services [26]
provide mechanisms for controlling resource usage for
CPU and kernel resources. Several have considered
disk time as a resource to be managed, with two high-
level approaches. One approach is to use admission
control to admit requests into the storage system ac-
cording to fair-sharing [17, 36] or explicit performance
goals [9, 18, 20, 38]. These systems use feedback con-
trol to manage the request rates of each service. They
do not, however, do anything to insulate the workloads
from one another. Argon complements such approaches
by mitigating inefficiency from interference.

A second approach is time-slicing of disk head time. For
example, the Eclipse operating system [6] allocates ac-
cess to the disk in 1/2-second time intervals. Many real-
time file systems [1, 12, 19, 23] use a similar approach.
With large time slices, applications will be completely
performance-insulated with respect to their disk head ef-
ficiency, but very high latency can result. Argon goes
beyond this approach by automatically determining the
lengths of time slices required and by adding appropri-
ate and automatically configured cache partitioning and
prefetch/write-back.

Rather than using time-slicing for disk head sharing, one
can use a QoS-aware disk scheduler, such as YFQ [5]
or Cello [29]. Such schedulers make low-level disk re-
quest scheduling decisions that reduce seek times and
also maintain per-service throughput balance. Argon
would benefit from such a QoS-aware disk scheduler, in
place of strict time-slicing, for workloads whose access
patterns would not interfere when combined.

3 Insulating from interference

Argon is designed to reduce interference between work-
loads, allowing sharing with bounded loss of efficiency.

In many cases, fairness or weighted fair sharing between
workloads is also desired. To accomplish the comple-
mentary goals of insulation and fairness, Argon com-
bines three techniques: aggressive amortization, cache
partitioning, and quanta-based scheduling. Argon auto-
matically configures each mechanism to reach the con-
figured fraction of standalone efficiency for each work-
load. This section describes Argon’s goals and mecha-
nisms.

3.1 Goals and metrics

Argon provides both insulation and weighted fair shar-
ing. Insulation means that efficiency for each work-
load is maintained even when other workloads share the
server. That is, the I/O throughput a service achieves,
within the fraction of server time available to it, should
be close to the throughput it achieves when it has the
server to itself. Argon allows “how close?” to be speci-
fied by a tunable R-value parameter, analogous to the R-
value of thermal insulation, that determines what fraction
of standalone throughput each service should receive.
So, if the R-value is set to 0.9, a service that gets 50%
of a server’s time should achieve at least 0.9 of 50% of
the throughput it would achieve if not sharing the server.
And, that efficiency should be achieved no matter what
other services do within the other 50% of the server’s
time, providing predictability in addition to performance
benefits.

Argon’s insulation focus is on efficiency, as defined by
throughput. While improving efficiency usually reduces
average response times, Argon’s use of aggressive amor-
tization and quanta-based scheduling can increase varia-
tion and worst-case response times. We believe that this
is an appropriate choice (Section 5 quantifies our experi-
ences with response time), but the trade-off between ef-
ficiency and response time variation is fundamental and
can be manipulated by the R-value choice.

Argon focuses on the two primary storage server re-
sources, disk and cache, in insulating a service’s effi-
ciency. It assumes that network bandwidth and CPU time
will not be bottleneck resources. Given that assumption,
a service’s share of server time maps to the share of disk
time that it receives. And, within that share of server
time, a service’s efficiency will be determined by what
fraction of its requests are absorbed by the cache and by
the disk efficiency of those that are not.

Disk efficiency, as discussed earlier, is the fraction of a
request’s service time spent actually transferring data to
or from the disk media. Note that this is not the same
as disk utilization—utilization may always be 100% in a
busy system, but efficiency may be high or low depend-
ing on how much time is spent positioning the disk head

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association64

www.manaraa.com

for each transfer. Idle time does not affect efficiency. So,
a service’s disk efficiency during its share of disk time
should be within the R-value of its efficiency when not
sharing the disk; for a given set of requests, disk effi-
ciency determines disk throughput.

Cache efficiency can be viewed as the fraction of requests
absorbed by the cache. Absorbed requests—read hits and
dirty block overwrites—are handled by the cache without
requiring any disk time. Unlike disk efficiency, cache ef-
ficiency cannot be maintained for every mix of services,
because each service’s cache efficiency is a non-linear
function of how much cache space (a finite resource) it
receives. To address this, a service will be in one of two
states: trial and supported. When first added, a service
receives spare cache space and is observed to see how
much it needs to achieve the appropriate absorption rate
(as described in Section 3.4). If the amount needed fits
in that spare cache space, that amount is allocated to the
service and the service becomes supported. If not, Ar-
gon reports the inability to support the service with full
efficiency, allowing an administrator or tool to migrate
the dataset to a different server, if desired, or leave it to
receive best effort efficiency. Thus, new services may
not be able to be supported, but supported services will
not have necessary cache space taken from them, thereby
maintaining their specified R-value of efficiency.

Argon’s fairness focus is on providing explicit shares
of server time. An alternative approach, employed in
some other systems, is to focus on per-service perfor-
mance guarantees. In storage systems, this is difficult
when mixing workloads because different mixes provide
very different efficiencies, which will confuse the feed-
back control algorithms used in such systems. Argon
provides a predictable foundation on which such systems
could build. Atop Argon, a control system could manip-
ulate the share allocated to a service to change its perfor-
mance, with much less concern about efficiency fluctua-
tions caused by interactions with other workloads shar-
ing the system. Exploring this approach is an area of
future work.

3.2 Overview of mechanisms

Figure 1 illustrates Argon’s high-level architecture. Ar-
gon provides weighted fair sharing by explicitly allocat-
ing disk time and by providing appropriately-sized cache
partitions to each workload. Each workload’s cache ef-
ficiency is insulated by sizing its cache partition to pro-
vide the specified R-value of the absorption rate it would
get from using the entire cache. Each workload’s disk
efficiency is insulated by ensuring that disk time is allot-
ted to clients in large enough quanta so that the majority
of time is spent handling client requests, with compara-

Application 1 Application N

Request queue

Partitioned
cache

prefetched blocks cached blocks

scheduler

Disks

...

amortized accesses

Figure 1: Argon’s high-level architecture. Argon makes use
of cache partitioning, request amortization, and quanta-based
disk time scheduling.

tively minimal time spent at the beginning of a quantum
seeking to the workload’s first request. To ensure quanta
are effectively used for streaming reads without requiring
a queue of actual client requests long enough to fill the
time, Argon performs aggressive prefetching; to ensure
that streaming writes efficiently use the quanta, Argon
coalesces them aggressively in write-back cache space.

There are four guidelines we follow when combining
these mechanisms and applying them to the goals. First,
no single mechanism is sufficient to solve all of the ob-
stacles to fairness and efficiency; each mechanism only
solves part of the problem. For instance, prefetching im-
proves the performance of streaming workloads, but does
not address unfairness at the cache level. Second, some
of the mechanisms work best when they can assume
properties that are guaranteed by other mechanisms. As
an example, both read and write requests require cache
space. If there are not enough clean buffers, dirty buffers
must first be flushed before a request can proceed. If the
dirty buffers belong to a different workload, then some
of the first workload’s time quantum must be spent per-
forming writes on behalf of the second. Cache partition-
ing simplifies this situation by ensuring that latent flushes
are on behalf of the same workload that triggers them,
which makes scheduling easier. Third, a combination
of mechanisms is required to prevent unfairness from
being introduced. For example, performing large disk
accesses for streaming workloads must not starve non-
streaming workloads, requiring a scheduler to balance
the time spent on each type of workload. Fourth, each
mechanism automatically adapts to ensure sufficient in-
sulation based on observed device and workload charac-
teristics and to avoid misconfiguration. For example, the

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 65

www.manaraa.com

ratio between disk transfer rates and positioning times
has changed over time, and full streaming efficiency re-
quires multi-MB prefetches on modern disks instead of
the 64–256 KB prefetches of OSes such as Linux and
FreeBSD.

3.3 Amortization

Amortization refers to performing large disk accesses
for streaming workloads. Because of the relatively high
cost of seek times and rotational latencies, amortization
is necessary in order to approach the disk’s streaming
efficiency when sharing the disk with other workloads.
However, as is commonly the case, there is a trade-off
between efficiency and responsiveness. Performing very
large accesses for streaming workloads will achieve the
disk’s streaming bandwidth, but at the cost of larger vari-
ance in response time. Because the disk is being used
more efficiently, the average response time actually im-
proves, as we show in Section 5. But, because blocking
will occur as large prefetch or coalesced requests are pro-
cessed, the maximum response time and the variance in
response times significantly increase. Thus, the prefetch
size should only be as large as necessary to achieve the
specified R-value.

In contrast to current file systems’ tendency to use 64 KB
to 256 KB disk accesses, Argon performs sequential ac-
cesses MBs at a time. As discussed in Section 4.2, care
is taken to employ a sequential read detector that does
not incorrectly predict large sequential access. The exact
access size is automatically chosen based on disk charac-
teristics and the configured R-value, using a simple disk
model. The average service time for a disk access not in
the vicinity of the current head location can be modeled
as:

S � Tseek �Trot�2�Ttrans f er

where S stands for service time, Tseek is the average seek
time, Trot is the time for one disk rotation, and Ttrans f er

is the media transfer time for the data. Tseek is the time
required to seek to the track holding the starting byte of
the data stream. On average, once the disk head arrives
at the appropriate track, a request will wait Trot�2 before
the first byte falls under the head.2 In contrast to the
previous two overhead terms, Ttrans f er represents useful
data transfer and depends on the transfer size. In order
to achieve disk efficiency of, for example, 0.9, Ttrans f er

must be 9 times larger than Tseek �Trot�2. As shown in
Table 1, modern SCSI disks have an average seek time

2Only a small minority of disks have the feature known as Zero-
Latency Access, which allows them to start reading as soon as the ap-
propriate track is reached and some part of the request is underneath
the head (regardless of the position of the first byte) and then reorder
the bytes later; this would reduce the Trot�2 term.

of �5 ms, a rotation period of �6 ms, and a track size
of �400 KB. Thus, for the Cheetah 10K.7 SCSI disk to
achieve a disk efficiency of 0.9 in a sequential access,
Ttrans f er must be 9 � �5 ms�6 ms�2� �72 ms. Ignoring
head switch time,� 72 ms�Trot � 12 tracks must be read,
which is 4.8 MB. Each number is higher on a typical
SATA drive.

As disks’ data densities increase at a much faster rate
than improvements in seek times and rotational speeds,
aggressive read prefetching and write coalescing grow
increasingly important. In particular, the access size of
sequential requests required for insulation increases over
time. Argon automatically determines the appropriate
size for each disk to ensure that it is matched to a server’s
current devices.

Multiple-MB sequential accesses have two implications.
Most significantly, the scheduling quantum for sequen-
tial workloads must be sufficiently long to permit large
sequential accesses. Consequently, although the aver-
age request response time will decrease due to overall
increased efficiency, the maximum and variance of the
response time usually increases. In addition, the storage
server must dedicate multiple-MB chunks of the cache
space for use as speed-matching buffers. Both of these
limitations are inescapeable if a system is to provide
near-streaming disk bandwidth in the presence of mul-
tiple workloads, due to mechanical disk characteristics.

So far, we have not distinguished between reads and
writes (which are amortized through read prefetch-
ing and write coalescing, respectively). From a disk-
efficiency standpoint, it does not matter whether one is
performing a large read or write request. Write coalesc-
ing is straightforward when a client sequentially writes a
file into a write-back cache. The dirty cache blocks are
sent in large groups (MBs) to the disk. Read prefetch-
ing is appropriate when a client sequentially reads a file.
As long as the client later reads the prefetched data be-
fore it is evicted from the cache, aggressive prefetching
increases disk efficiency by amortizing the disk position-
ing costs.

3.4 Cache partitioning

Cache partitioning refers to explicitly dividing up a
server’s cache among multiple services. Specifically, if
Argon’s cache is split into n partitions among services
W1� ����Wn, then Wi’s data is only stored in the server’s
ith cache partition, irrespective of the services’ request
patterns. Instead of allowing high cache occupancy for
some services to arise as an artifact of access patterns
and the cache eviction algorithm, cache partitioning pre-
serves a specific fraction of cache space for each service.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association66

www.manaraa.com

Average Req. Size
Head Average Sectors for 0.9

Disk Year RPM Switch Seek Per Track Capacity Efficiency
IBM Ultrastar 18LZX (SCSI) 1999 10000 0.8 ms 5.9 ms 382 18 GB 2.2 MB
Seagate Cheetah X15 (SCSI) 2000 15000 0.8 ms 3.9 ms 386 18 GB 2.5 MB
Maxtor Atlas 10K III (SCSI) 2002 10000 0.6 ms 4.5 ms 686 36 GB 3.4 MB
Seagate Cheetah 10K.7 (SCSI) 2006 10000 0.5 ms 4.7 ms 566 146 GB 4.8 MB
Seagate Barracuda (SATA) 2006 7200 1.0 ms 8.2 ms 1863 250 GB 13 MB

Table 1: SCSI/SATA disk characteristics. Positioning times have not dropped significantly over the last 7 years, but disk density
and capacity have grown rapidly. This trend calls for more aggressive amortization.

It is often not appropriate to simply split the cache into
equal-sized partitions. Workloads that depend on achiev-
ing a high cache absorption rate may require more than
1�nth of the cache space to achieve the R-value of their
standalone efficiency in their time quantum. Conversely,
large streaming workloads only require a small amount
of cache space to buffer prefetched data or dirty write-
back data. Therefore, knowledge of the relationship be-
tween a workload’s performance and its cache size is
necessary in order to correctly assign it sufficient cache
space to achieve the R-value of its standalone efficiency.

Argon uses a three-step process to discover the required
cache partition size for each workload. First, a work-
load’s request pattern is traced; this lets Argon deduce
the relationship between a workload’s cache space and
its I/O absorption rate (i.e., the fraction of requests that
do not go to disk). Second, a system model predicts the
workload’s throughput as a function of the I/O absorption
rate. Third, Argon uses the specified R-value to compute
the required I/O absorption rate (the relationship calcu-
lated in step 2), which is then used to select the required
cache partition size (the relationship calculated in step 1).

In the first phase, Argon traces a workload’s requests. A
cache simulator uses these traces and the server’s cache
eviction policy to calculate the I/O absorption rate for
different cache partition sizes. Figure 2 depicts some
example cache profiles for commonly-used benchmarks.
The total server cache size is 1024 MB. On one hand,
the TPC-C cache profile shows that achieving a simi-
lar I/O absorption rate to the one achieved with the total
cache requires most of the cache space to be dedicated to
TPC-C. On the other hand, TPC-H Query 3 can achieve
a similar I/O absorption rate to its standalone value with
only a fraction of the full cache space. If both the
TPC-C workload and TPC-H Query 3 use the same stor-
age server, Argon will give most of the cache space to
the TPC-C workload, yet both workloads will achieve
similar I/O absorption rates to the ones they obtained in
standalone operation.

In the second phase, Argon uses an analytic model to
predict the workload’s throughput for a specific I/O ab-

0

20

40

60

80

100

0 128 256 384 512 640 768 896 1024
Cache partition size (MB)

%
 I/

O
s

ab
so

rb
ed

TPC-C TPC-H Query 3 TPC-H Query 7

Figure 2: Cache profiles. Different workloads have different
working set sizes and access patterns, and hence different cache
profiles. The I/O absorption percentage is defined as the frac-
tion of requests that do not go to disk. Such requests include
read hits and overwrites of dirty cache blocks. The exact setup
for these workloads is described in Section 5.1.

sorption rate. In the discussion below, we will only con-
sider reads to avoid formula clutter (the details for writes
are similar). Let Si be the average service time, in sec-
onds, of a read request from service i. Si is modelled
as pi � SBUF

i � �1� pi� � SDISK
i . Read requests hit the

cache with probability pi and their service time is the
cache access time, SBUF

i . The other read requests miss
in the cache with probability 1� pi and incur a service
time SDISK

i (write requests similarly can be overwritten
in cache or eventually go to disk). pi is estimated as a
function of the workload’s cache size, as described in the
first step. SDISK

i is continuously tracked per workload, as
described in Section 4.4. The server throughput equals
1�Si, assuming no concurrency.

In the final phase, Argon uses the R-value to calculate
the required workload throughput when sharing a server
as follows:

Throughput required
in share of time � (Throughput alone) � (R-Value)

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 67

www.manaraa.com

A workload must realize nearly its full standalone
throughput in its share of time in order to achieve high
efficiency. Its actual throughput calculated over the time
both it and other workloads are executing, however, may
be much less. As an example, suppose a workload re-
ceives 10 MB/s of throughput when running alone, and
that an R-value of 0.9 is desired. This formula says that
the workload must receive at least 9 MB/s in its share
of time. (If it is sharing the disk fairly with one other
workload, then its overall throughput will be 9 � 50% �
4�5 MB/s.)

Using the second step’s analytic model, Argon calculates
the minimum I/O absorption rate required for the work-
load to achieve Throughput required during its share of
disk time. Then, the minimum cache partition size neces-
sary to achieve the required I/O absorption rate is looked
up using the first step’s cache profiles. If it is not possi-
ble to meet the R-value because of insufficient free cache
space, the administrator (or automated management tool)
is notified of the best efficiency it could achieve.

3.5 Quanta-based scheduling

Scheduling in Argon refers to controlling when each
workload’s requests are sent to the disk firmware (as op-
posed to “disk scheduling,” such as SPTF, C-SCAN, or
elevator scheduling, which reorders requests for perfor-
mance rather than for insulation; disk scheduling occurs
in the disk’s queue and is implemented in its firmware).
Scheduling is necessary for three reasons. First, it en-
sures that a workload receives exclusive disk access, as
required for amortization. Second, it ensures that disk
time is appropriately divided among workloads. Third,
it ensures that the R-value of standalone efficiency for a
workload is achieved in its quantum, by ensuring that the
quantum is large enough.

There are three phases in a workload’s quantum. In the
first phase, Argon issues requests that have been queued
up waiting for their time slice to begin. If more requests
are queued than the scheduler believes will be able to
complete in the quantum, only enough to fill the quan-
tum are issued. In the second phase, which only occurs
if the queued requests are expected to complete before
the quantum is over, the scheduler passes through new
requests arriving from the application, if any. The third
phase begins once the scheduler has determined that is-
suing additional requests would cause the workload to
exceed its quantum. During this period, the outstanding
requests are drained before the next quantum begins.

Inefficiency is introduced by a quanta-based scheduler in
two ways. First, if a workload has many outstanding re-
quests, the scheduler may need to throttle the workload
and reduce its level of concurrency at the disk in order to

ensure it does not exceed its quantum. It is well-known
that, for non-streaming workloads, the disk scheduler is
most efficient when the disk queue is large. Second, dur-
ing the third phase, draining a workload’s requests also
reduces the efficiency of disk head scheduling. In order
to automatically select an appropriate quantum size to
meet efficiency goals, an analytical lower bound can be
established on the efficiency for a given quantum size by
modeling these effects for the details (concurrency level
and average service time) of the specific workloads in
the system. Once a quantum length is established, the
number of requests that a particular workload can issue
without exceeding its quantum is estimated based on the
average service time of its requests, which the scheduler
monitors.

Efficiency can also depend upon whether request mixing
is allowed to happen for non-streaming workloads. Effi-
ciency may be increased by mixing requests from multi-
ple workloads at once, instead of adhering to strict time
slices, because this lengthens disk queues. From an in-
sulation standpoint, however, doing so is acceptable only
if all clients receive a fair amount of disk time and effi-
cient use of that time. This does not always occur — for
instance, some workloads may have many requests “in
the pipeline” while others may not. In particular, clients
with non-sequential accesses often maintain several out-
standing requests at the disk to allow more efficient disk
scheduling. Others may not be able to do this; for in-
stance, if the location of the next request depends upon
data returned from a preceding request (as when travers-
ing an on-disk data structure), concurrency for that work-
load is limited. If such workloads are mixed, starva-
tion may occur for the less aggressive workload. Our
current design decision has been biased in favor of fair-
ness; we do not allow requests from different workloads
to be mixed, instead using strict quanta-based schedul-
ing. This ensures that each client gets exclusive access
to the disk during a scheduling quantum, which avoids
starvation because active clients’ quanta are scheduled in
a round-robin manner. In continuing work, we are inves-
tigating ways to maintain fairness and insulation while
using a mixed-access scheduler.

4 Implementation

We have implemented the Argon storage server to test
the efficacy of our performance insulation techniques.
Argon is a component in the Ursa Minor cluster-based
storage system [2] which exposes an object-based inter-
face [22]. To focus on disk sharing, as opposed to the
distributed system aspects of the storage system, we use
a single storage server and run benchmarks on the same
node, unless otherwise noted.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association68

www.manaraa.com

The techniques of amortization and quanta-based
scheduling are implemented on a per-disk basis. Cache
partitioning is done on a per-server basis, by default. The
design of the system also allows per-disk cache partition-
ing.

Argon is implemented in C++ and runs on Linux and
Mac OS X. For portability and ease-of-development, it is
implemented entirely in user-space. Argon stores objects
in any underlying POSIX filesystem, with each object
stored as a file. Argon performs its own caching; the un-
derlying file system cache is disabled (through open()’s
O DIRECT option in Linux and fcntl()’s F NOCACHE op-
tion in Mac OS X). Our servers are battery-backed. This
enables Argon to perform write-back caching, by treat-
ing all of the memory as NVRAM.

4.1 Distinguishing among workloads

To distinguish among workloads, operations sent to Ar-
gon include a client identifier. “Client” refers to a ser-
vice, not a user or a machine. In our cluster-based stor-
age system, it is envisioned that clients will use sessions
when communicating with a storage server; the identifier
is an opaque integer provided by the system to the client
on a new session. A client identifier can be shared among
multiple nodes; a single node can also use multiple iden-
tifiers.

4.2 Amortization

To perform read prefetching, Argon must first detect the
sequential access pattern to an object. For every ob-
ject in the cache, Argon tracks a current run count: the
number of consecutively read blocks. If a client reads
a block that is neither the last read block nor one past
that block, then the run count is reset to zero. During a
read, if the run count is above a certain threshold (4), Ar-
gon reads “run count” number of blocks instead of just
the requested one. For example, if a client has read 8
blocks sequentially, then the next client read that goes to
disk will prompt Argon to read a total of 8 blocks (thus
prefetching 7 blocks). Control returns to the client before
the entire prefetch has been read; the rest of the blocks
are read in the background. The prefetch size grows un-
til the amount of data reaches the threshold necessary to
achieve the desired level of disk efficiency; afterwards,
even if the run count increases, the prefetch size remains
at this threshold.

When Argon is about to flush a dirty block, it checks the
cache for any contiguous blocks that are also dirty. In
that case, Argon flushes these blocks together to amortize
the disk positioning costs. As with prefetching, the write
access size is bounded by the size required to achieve the

desired level of disk efficiency. Client write operations
complete as soon as the block(s) specified by the client
are stored in the cache; blocks are flushed to disk in the
background (within the corresponding service’s quanta).

4.3 Cache partitioning

Recall from Section 3.4 that the cache partitioning al-
gorithm depends on knowledge of the cache profile for
a workload. The cache profile provides a relationship
between the cache size given to a workload and the ex-
pected I/O absorption rate. Argon collects traces of a
workload’s accesses during the trial phase (when the
workload is first added). It then processes those traces
using a simulator to predict the absorption rate with hy-
pothetical cache sizes.

The traces collected while a workload is running capture
all aspects of its interactions with the cache (cache hits,
misses, and prefetches). Such tracing is built in to the
storage server, can be triggered on demand (e.g., when
workloads change and models need to be updated), and
has been shown to incur minimal overheads (5-6%) on
foreground workloads in the system [31]. Once sufficient
traces for a run are collected, a cache simulator derives
the full cache profile for the workload. The simulator
does so by replaying the original traces using hypothet-
ical cache sizes and the server’s eviction policy. Simu-
lation is used, rather than an analytical model, because
cache eviction policies are often complex and system-
dependent; we found that they cannot be adequately cap-
tured using analytical formulas. We have observed that
for cache hits the simulator and real cache manager need
similar times to process a request. The simulator is on av-
erage three orders of magnitude faster than the real sys-
tem when handling cache misses (the simulator spends
at most 9,500 CPU cycles handling a miss, whereas, on a
3.0 GHz processor, the real system spends the equivalent
of about 22,500,000 CPU cycles). The prediction accu-
racy of the simulator has also been shown to be within
5% [30].

Another implementation issue is dealing with slack
cache space, the cache space left over after all work-
loads have taken their minimum share. Currently slack
space is distributed evenly among workloads; if a new
workload enters the system, the slack space is reclaimed
from the other workloads and given to the new work-
load. This method is very similar to that described by
Waldspurger [37] for space reclamation. Other choices
are also reasonable, such as assigning the extra space to
the workload that would benefit the most, or reserving it
for incoming workloads.

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 69

www.manaraa.com

4.4 Quanta-based scheduling

Scheduling is necessary to ensure fair, efficient access to
the disk. Argon performs simple round-robin time quan-
tum scheduling, with each workload receiving a schedul-
ing quantum. Requests from a particular workload are
queued until that workload’s time quantum begins. Then,
queued requests from that workload are issued, and in-
coming requests from that workload are passed through
to the disk until the workload has submitted what the
scheduler has computed to be the maximum number of
requests it can issue in the time quantum, or the quantum
expires.

The scheduler must estimate how many requests can be
performed in the time quantum for a given workload,
since average service times of requests may vary be-
tween workloads. Initially, the scheduler assigns each
request the average rotational plus seek time of the disk.
The scheduler then measures the amount of time these
requests have taken to derive an average per-request
service time for that workload. The automatically-
configured scheduling time quantum (chosen based on
the desired level of efficiency) is then divided by the cal-
culated average service time to determine the maximum
number of requests that will be allowed from that partic-
ular workload during its next quantum.

To provide both hysteresis and adaptability in this pro-
cess, an exponentially weighted moving average is used
on the number of requests for the next quantum. As a
result of estimation error and changes in the workload
over time, the intended time quanta are not always ex-
actly achieved.

Argon does not terminate a quantum until the fixed time
length expires. Consequently, workloads with few out-
standing requests or with short periods of idle time do not
lose the rest of their turn simply because their queue is
temporarily empty. Argon does have a policy to deal with
situations wherein a time quantum begins but a client
has no outstanding requests, however. On one hand, to
achieve strict fair sharing, one might reserve the quan-
tum even for an idle workload, because the client might
be about to issue a request [14, 16]. On the other hand,
to achieve maximum disk utilization, one might skip the
client’s turn and give the scheduling quantum to the next
client which is currently active; if the inactive client later
issues a request, it could wait for its next turn or inter-
rupt the current turn. Argon takes a middle approach —
a client’s scheduling quantum is skipped if the client has
been idle for the last k consecutive scheduling quanta.
Argon currently leaves k as a manual configuration op-
tion (set to 3 by default). It may be possible to auto-
matically select an optimal value for a given workload
through trace analysis.

5 Evaluation

This section evaluates the Argon storage server proto-
type. First, we use micro-benchmarks to show the perfor-
mance problems arising from storage server interference,
and Argon’s effectiveness in mitigating them. Micro-
benchmarks allow precise control of the workload access
patterns and system load. Second, macro-benchmarks il-
lustrate the real-world efficacy of Argon.

5.1 Experimental setup

The machines hosting both the server and the clients have
dual Pentium 4 Xeon 3.0 GHz processors with 2 GB of
RAM. The disks are Seagate Barracuda SATA disks (see
Table 1 for their characteristics). One disk stores the OS,
and the other stores the objects (except in one experiment
which uses two disks to store objects to focus on the ef-
fects of cache sharing). The drives are connected through
a 3ware 9550SX controller, which exposes the disks to
the OS through a SCSI interface. Both the disks and the
controller support command queuing. All computers run
the Debian “testing” distribution and use Linux kernel
version 2.4.22.

Unless otherwise mentioned, all experiments are run
three times, and the average is reported. Except where
noted, the standard deviation is less than 5% of the aver-
age.

5.2 Micro-benchmarks

This section illustrates micro-benchmark results ob-
tained using both Linux and Argon. These experiments
underscore the need for performance insulation and cat-
egorize the benefits that can be expected along the three
axes of amortization, cache partitioning, and quanta-
based scheduling.

Micro-benchmarks are run on a single server, accessing
Argon using the object-based interface. In each experi-
ment, objects are stored on the server and are accessed
by clients running on the same server (to emphasize the
effects of disk sharing, rather than networking effects).
Each object is 56 GB in size, a value chosen so that
all of the disk traffic will be contained in the highest-
performance zone of the disk.3 The objects are written
such that each is fully contiguous on disk. While the sys-
tem is configured so that no caching of data will occur
at the operating system level, the experiments are per-
formed in a way that ensures all of the metadata (e.g., in-
odes and indirect blocks) needed to access the objects is

3Disks have different zones, with only one zone experiencing the
best streaming performance. To ensure that the effects of performance
insulation are not conflated with such disk-level variations, it is neces-
sary to contain experiments within a single zone of the disk.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association70

www.manaraa.com

cached, to concentrate solely on the issue of data access.
In experiments involving non-streaming workloads, un-
less otherwise noted, the block selection process is con-
figured to choose a uniformly distributed subset of the
blocks across the file. The aggregate size of this subset
is chosen relative to the cache size to achieve the desired
absorption rate.4

Amortization: Figure 3(a) shows the performance
degradation due to insufficient request amortization in
Linux. Two streaming read workloads, each of which
receives a throughput of approximately 63 MB/s when
running alone, do not utilize the disk efficiently when
running together. Instead, each receives a ninth of its
unshared performance, and the disk is providing, over-
all, only one quarter of its streaming throughput. Disk
accesses for each of the workloads end up being 64 KB
in size, which is not sufficient to amortize the cost of
disk head movement when switching between work-
loads, even though Linux does perform prefetching.

Figure 3(b) shows the effect of amortization in Argon.
The version of Argon without performance insulation has
similar problems to Linux. However, by performing ag-
gressive amortization (in this case, using a prefetch size
of 8 MB, which corresponds, for the disk being used, to
an R-value of 0.9), streaming workloads better utilize the
disk and achieve higher throughput — both workloads
receive nearly half of their performance when running
alone, and the disk is providing nearly its full streaming
bandwidth.

Figure 4 shows the CDF (cumulative distribution func-
tion) of response time for one of the streaming read
workloads in each scenario. (The other workload ex-
hibits a virtually identical distribution because the work-
loads are identical in this experiment.) The three curves
depict response times for the cases of the sequential
workloads running alone, together without prefetching,
and together with prefetching. The value on the y-axis
indicates what fraction of requests experienced, at most,
the corresponding response time on the x-axis (which
is shown in log scale). For instance, when running
alone, approximately 80% of the requests had a response
time not exceeding 2 ms. Without performance insula-
tion, each sequential workload not only suffered a loss
of throughput, but also an increase in average response
times; approximately 85% of the requests waited for 25–
29 ms. With prefetching enabled, more than 97% of the
requests experienced a response time of less than 1 ms,
with many much less.5 Because some requests must wait
in a queue for their workload’s time slice to begin, how-
ever, a small number (�2.4%) had response times above

4One alternative would be to vary the file size to control absorption
rates, but this would also affect the disk seek distance, adding another
variable to the experiments.

0

20

40

60

80

Alone Combined

Th
ro

ug
hp

ut
 (M

B
/s

)

Alone No perf-ins With perf-ins

Linux Argon

(a) (b)

Figure 3: Throughput of two streaming read workloads in
Linux and Argon.

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000

Response time (ms)

C
um

ul
at

iv
e

fra
ct

io
n

Alone No perf-ins With perf-ins

Figure 4: Response time CDFs. When running alone, the
average of response times is 2.0 ms and the standard deviation
is 1.17 ms. When the two workloads are mixed without per-
formance insulation, the average for each is 28.2 ms and the
standard deviation is 3.2 ms. When using performance insula-
tion, the average is 4.5 ms and the standard deviation is 27 ms.

95 ms. This increases the variance in response time,
while the mean and median response times decrease.

Cache partitioning: Figure 5(a) shows the performance
degradation due to cache interference in Linux. A
streaming workload (Workload 1), when run together
with a non-streaming workload (Workload 2) with a
cache absorption rate of 50%, degrades the performance
of the non-streaming workload. To focus on only the
cache partitioning problem, both workloads share the
same cache, but go to separate disks. Because of its much
higher throughput, the streaming workload evicts nearly
all of the blocks belonging to the non-streaming work-
load. This causes the performance of the latter to de-
crease to approximately what it would receive if it had no
cache hits at all — its performance drops from 3.9 MB/s
to 2.3 MB/s, even though only the cache, and not the
disk, is being shared. We believe that the small decrease

5In fact, the response times for many requests improve beyond the
standalone case because no prefetching was being performed in the
original version of Argon.

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 71

www.manaraa.com

0

20

40

60

80

Workload 1 Workload 2 Combined

Th
ro

ug
hp

ut
 (M

B
/s

) Linux Argon

Workload 1 Workload 2 No perf-ins With perf-ins

(a) (b)

Figure 5: Effects of cache interference in Linux and Argon.
The standard deviation is at most 0.55 MB/s for all Linux runs
and less than 5% of the average for the Argon runs.

in the streaming workload’s performance is an artifact of
a system bottleneck.

Figure 5(b) shows the effect when the same workloads
run on Argon. The bar without performance insulation
shows the non-streaming workload combined with the
streaming workload. In that case, the performance the
non-streaming workload receives equals the performance
of a non-streaming workload with a 0% absorption rate.
By adding cache partitioning and using the cache sim-
ulator to balance cache allocations (setting the desired
R-value to 0.9, the simulator decides to give nearly all of
the cache to the non-streaming workload), Workload 2
gets nearly all of its standalone performance.

Quanta-based scheduling: Figure 6(a) shows the per-
formance degradation due to unfair scheduling of re-
quests in Linux. Two non-streaming workloads, one with
27 requests outstanding (Workload 1) and one with just 1
request outstanding (Workload 2), are competing for the
disk. When run together, the first workload overwhelms
the disk queue and starves the requests from the second
workload. Hence, the second workload receives practi-
cally no service from the disk at all.

Figure 6(b) shows the effect of quanta-based disk time
scheduling in Argon. The version of Argon with per-
formance insulation disabled had similar problems to
Linux. However, by adding quanta-based scheduling
with 140 ms time quanta (which achieves an R-value of
0.9 for the disk and workloads being used), the two non-
streaming workloads each get a fair share of the disk.
Average response times for Workload 1 increased by
�2.3 times and average response times for Workload 2
decreased by �37.1 times compared to their uninsulated
performance. Both workloads received slightly less than
50% of their unshared throughput, exceeding the R� 0�9
bound.

Proportional scheduling: Figure 7 shows that the shar-
ing of an Argon server need not be fair; the proportion
of performance assigned to different workloads can be
adjusted to meet higher-level goals. In the experiment,
the same workloads as in Figure 6(b) are shown, but the

0

1

2

Workload 1 Workload 2 Combined

Th
ro

ug
hp

ut
(M

B
/s

)

Workload 1 Workload 2 No perf-ins With perf-ins

Linux Argon

(a) (b)

Figure 6: Need for request scheduling in Linux and Argon.
The standard deviation is at most 0.01 MB/s for all Linux runs
and at most 0.02 MB/s for all Argon runs.

0

1

2

Ideal Argon

Th
ro

ug
hp

ut
 (M

B
/s

)

Workload 1 Workload 2

Figure 7: Scheduling support for two random-access work-
loads. With the same workloads as Figure 6(b), scheduling
can be adjusted so that Workload 2 gets 75% of the server time.

requirement is that the workload with one request out-
standing (Workload 2) receive 75% of the server time,
and the workload with 27 requests outstanding (Work-
load 1) receive only 25%; quanta sizes are proportionally
sized to achieve this. Amortization and cache partition-
ing can similarly be adapted to use weighted priorities.

Combining sequential and random workloads: Ta-
ble 2 shows the combination of the amortization and
scheduling mechanisms when a streaming workload
shares the storage server with a non-streaming workload.
To focus on just the amortization and scheduling effects,
the non-sequential workload does not hit in cache at all.
Without performance insulation, the workloads receive
2.2 MB/s and 0.55 MB/s respectively. With performance
insulation they receive 31.5 MB/s and 0.68 MB/s, well
within R� 0�9 of standalone efficiency, as desired.

Figure 8 shows the CDF of response times for both
workloads. The sequential workload, shown in Fig-
ure 8(a), exhibits the same behavior shown in Figure 4
and discussed earlier. As before, the variance and maxi-
mum of response times increase while the mean and me-
dian decrease. The random workload is shown in Fig-
ure 8(b). Running alone, it had a range of response times,
with none exceeding 26 ms. The 90 th percentile was at
13.7 ms. Virtually all values were above 3 ms. Running
together with the sequential workload, response times in-

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association72

www.manaraa.com

Scenario Throughput
Alone Workload 1 (S) 63.5 MB/s

Workload 2 (R) 1.5 MB/s
Combined Workload 1 (S) 2.2 MB/s
(no perf-ins.) Workload 2 (R) 0.55 MB/s
Combined Workload 1 (S) 31.5 MB/s
(with perf-ins.) Workload 2 (R) 0.68 MB/s

Table 2: Amortization and scheduling effects in Argon.
Performance insulation results in much higher efficiency for
both workloads. Standard deviation was less than 6% for all
runs.

creased; they ranged from 6–60 ms with the 90 th per-
centile at 33 ms. Once aggressive prefetching was en-
abled for the sequential workload, the bottom 92% of
response times for the random workload ranged from 3–
24.5 ms. The remainder were above 139 ms, resulting in
a lower mean and median, but higher variance.

Scaling number of workloads: Figure 9 shows the com-
bined effect of all three techniques on four workloads
sharing a storage server. Workload 1 is the stream-
ing workload used in the previous experiments. Work-
load 2 is a uniformly random workload with a standalone
cache absorption rate of 12.5%. Workload 3 is a micro-
benchmark that mimics the behavior of TPC-C (with a
non-linear cache profile similar to that shown in Fig-
ure 2). Workload 4 is a uniformly random workload with
zero cache absorption rate. All four workloads get within
the desired R-value (0.9) of standalone efficiency when
sharing the storage server.

Adjusting sequential access size: Figure 10 shows the
effect of prefetch size on throughput. Two stream-
ing workloads, each with an access size of 64 KB,
were run with performance insulation. The performance
each of them receives is similar, hence we only show
the throughput of one of them. In isolation, each of
these workloads receives approximately 62 MB/s, hence
the ideal scenario would be to have them each receive
31 MB/s when run together. This graph shows that the
desired throughput is achieved with a prefetch size of
at least 32 MB, and that R � 0�9 can be achieved with
8 MB prefetches. We observed that further increases in
prefetch size do not improve, or degrade, performance
significantly.

Adjusting scheduling quantum: Figure 11 shows the
result of a single-run experiment intended to measure the
effect of the scheduling quantum (or the amount of disk
time scheduled for one workload before moving on to the
other workloads) on throughput. For simplicity, we show
quanta measured in number of requests for this figure,

(a) Workload 1 (Sequential) (b) Workload 2 (Random)

C
um

ul
at

iv
e

fra
ct

io
n

Response time (ms) Response time (ms)
0.1 1 10 100 1000 0.1 1 10 100 10000.01

Alone No perf-ins With perf-ins
1

0.8

0.6

0.4

0.2

Figure 8: Response time CDFs. The standard deviation of
response time for the sequential (a) and random-access work-
loads (b) when they run alone is 0.316 ms and 2.72 ms respec-
tively. The random-access workload’s average response time
is 10.3 ms. When the two workloads are mixed without per-
formance insulation, the standard deviation of their response
times is 4.16 ms and 4.01 ms respectively. The random-access
workload’s average response time is 28.2 ms. When using
performance insulation the standard deviation is 15.87 ms and
39.3 ms respectively. The random-access workload’s average
response time is 21.9 ms.

rather than in terms of time — since different workloads
may have different average service times, the scheduler
actually schedules in terms of time, not number of re-
quests. Two non-streaming workloads are running in-
sulated from each other. We only show the throughput
of one of them. In isolation, the workload shown re-
ceives approximately 2.23 MB/s, hence the ideal sce-
nario would be to have it receive 1.11 MB/s when run
together with the other. This graph shows that the de-
sired throughput is achieved with a scheduling quantum
of at least 128 requests, and that R� 0�9 can be achieved
with one of 32. We observed that further increases in
quantum size do not improve, or degrade, performance
significantly.

5.3 Macro-benchmarks

To explore Argon’s techniques on more complex work-
loads, we ran TPC-C (an OLTP workload) and TPC-H
(a decision support workload) using the same storage
server. The combined workload is representative of re-
alistic scenarios when data mining queries are run on a
database while transactions are being executed. The goal
of the experiment is to measure the benefit each work-
load gets from performance insulation when sharing the
disk.

Each workload is run on a separate machine, and com-
municates with the Argon storage server through an NFS
server that is physically co-located with Argon and uses
its object-based access protocol.

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 73

www.manaraa.com

0

1

2

3

Workload 1 Workload 2 Workload 3 Workload 4

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
No perf-ins With perf-ins

Figure 9: Four workloads sharing a storage server. The
normalization is done with respect to the throughput each work-
load receives when running alone, divided by four.

TPC-C workload: The TPC-C workload mimics an
on-line database performing transaction processing [32].
Transactions invoke 8 KB read-modify-write operations
to a small number of records in a 5 GB database. The
performance of this workload is reported in transactions
per minute (tpm). The cache profile of this workload is
shown in Figure 2.

TPC-H workload: TPC-H is a decision-support bench-
mark [33]. It consists of 22 different queries, and two
batch update statements. Each query processes a large
portion of the data in streaming fashion in a 1 GB
database. The cache profile of two (arbitrarily) chosen
queries from this workload are shown in Figure 2.

Figure 12 shows the results: without performance insu-
lation, the throughput of both benchmarks degrades sig-
nificantly. With an R-value of 0.95, Argon’s insulation
significantly improves the performance for both work-
loads. Figure 13 examines the run with TPC-H Query 3
more closely. This figure shows how much each of the
three techniques, scheduling (S), amortization (A), and
cache partitioning (CP) contribute to maintaining the de-
sired efficiency.

6 Conclusions and future work

Storage performance insulation can be achieved when
services share a storage server. Traditional disk and
cache management policies do a poor job, allowing inter-
ference among services’ access patterns to significantly
reduce efficiency (e.g., by factor of four or more). Argon
combines and automatically configures prefetch/write-
back, cache partitioning, and quanta-based disk time
scheduling to provide each service with a configurable
fraction (the R-value; e.g., 0.9) of the efficiency it would

ideal throughput

0

10

20

30

40

64 128 256 512 1024 2048 4096 8192 16284 32768

Prefetch size (KB)

Th
ro

ug
hp

ut
 (M

B
/s

)

Figure 10: Effect of prefetch size on throughput.

0

0.4

0.8

1.2

1 2 4 8 16 32 64 128 256

Scheduling quantum (number of requests)

Th
ro

ug
hp

ut
 (M

B
/s

) ideal throughput

Figure 11: Effect of scheduling quantum on throughput.

receive without competition. So, with fair sharing, each
of n services will achieve no worse than R�n of its stan-
dalone throughput. This increases both efficiency and
predictability when services share a storage server.

Argon provides a strong foundation on which one could
build a shared storage utility with performance guaran-
tees. Argon’s insulation allows one to reason about the
throughput that a service will achieve, within its share,
without concern for what other services do within their
share. Achieving performance guarantees also requires
an admission control algorithm for allocating shares of
server resources, which can build on the Argon founda-
tion. In addition, services that cannot be insulated from
one another (e.g., because they need the entire cache) or
that have stringent latency requirements must be sepa-
rated. Argon’s configuration algorithms can identify the
former and predict latency impacts so that the control
system can place such services’ datasets on distinct stor-
age servers. Our continuing work is exploring the design
of such a control system, as well as approaches for han-
dling workload changes over time.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association74

www.manaraa.com

0.2

0.4

0.6

0.8

1.0

1.2

No perf-ins With perf-ins No perf-ins With perf-ins

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
TPC-C TPC-H Query 3 TPC-C TPC-H Query 7

Figure 12: TPC-C and TPC-H running together.
TPC-C shown running with TPC-H Query 3 and then with
TPC-H Query 7. The normalized throughput with and without
performance insulation in shown. The normalization is done
with respect to the throughput each workload receives when
running alone, divided by two.

Acknowledgements

We thank Gregg Economou, Michael Stroucken, Chuck
Cranor, and Bill Courtright for assistance in configur-
ing hardware, Craig Soules, John Strunk, Amin Vahdat
(our shepherd) and the many anonymous reviewers for
their feedback. We thank the members and companies
of the PDL Consortium (including APC, Cisco, EMC,
Hewlett-Packard, Hitachi, IBM, Intel, Network Appli-
ance, Oracle, Panasas, Seagate, and Symantec) for their
interest, insights, feedback, and support. We also thank
Intel, IBM, Network Appliances, Seagate, and Sun for
hardware donations that enabled this work. This mate-
rial is based on research sponsored in part by the Na-
tional Science Foundation, via grants #CNS-0326453
and #CCF-0621499, by the Air Force Research Labora-
tory, under agreement number F49620–01–1–0433, and
by the Army Research Office, under agreement number
DAAD19–02–1–0389. Matthew Wachs is supported in
part by an NDSEG Fellowship, which is sponsored by
the Department of Defense.

References
[1] R. Abbott and H. Garcia-Molina. Scheduling real-time

transactions with disk-resident data. CS–TR–207–89.
Department of Computer Science, Princeton University,
February 1989.

[2] M. Abd-El-Malek, W. V. Courtright II, C. Cranor, G. R.
Ganger, J. Hendricks, A. J. Klosterman, M. Mesnier,
M. Prasad, B. Salmon, R. R. Sambasivan, S. Sinnamo-
hideen, J. D. Strunk, E. Thereska, M. Wachs, and J. J.
Wylie. Ursa Minor: versatile cluster-based storage. Con-

TPC-C TPC-H Query 3

0.2

0.4

0.6

0.8

1.0

1.2

No perf-ins CP S S+CP S+CP+A

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Figure 13: All three mechanisms are needed to achieve per-
formance insulation. The different techniques are examined
in combination. “CP” is cache partitioning, “S” is scheduling,
“A” is amortization. Argon uses all of them in combination.
The normalization is done with respect to the throughput each
workload receives when running alone, divided by two.

ference on File and Storage Technologies, pages 59–72.
USENIX Association, 2005.

[3] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt,
M. Kalantar, S. Krishnakumar, D. P. Pazel, J. Pershing,
and B. Rochwerger. Oceano - SLA Based Management
of a Computing Utility. IM – IFIP/IEEE International
Symposium on Integrated Network Management, pages
855–868. IFIP/IEEE, 2001.

[4] G. Banga, P. Druschel, and J. C. Mogul. Resource con-
tainers: a new facility for resource management in server
systems. Symposium on Operating Systems Design and
Implementation, pages 45–58. ACM, Winter 1998.

[5] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Sil-
berschatz. Disk scheduling with quality of service guar-
antees. IEEE International Conference on Multimedia
Computing and Systems, pages 400–405. IEEE, 1999.

[6] J. Bruno, E. Gabber, B. Ozden, and A. Silberschatz. The
Eclipse operating system: Providing quality of service via
reservation domains. USENIX Annual Technical Confer-
ence, pages 235–246. USENIX Association, 1998.

[7] P. Cao, E. W. Felten, and K. Li. Implementation and per-
formance of application-controlled file caching. Sympo-
sium on Operating Systems Design and Implementation,
pages 165–177. Usenix Association, 14–17 November
1994.

[8] P. Cao, E. W. Felten, and K. Li. Application-controlled
file caching policies. Summer USENIX Technical Con-
ference, pages 171–182, 6–10 June 1994.

[9] D. D. Chambliss, G. A. Alvarez, P. Pandey, D. Jadav,
J. Xu, R. Menon, and T. P. Lee. Performance virtualiza-
tion for large-scale storage systems. Symposium on Reli-
able Distributed Systems, pages 109–118. IEEE, 2003.

[10] J. S. Chase, D. C. Anderson, P. N. Thakar, A. Vahdat,
and R. P. Doyle. Managing energy and server resources
in hosting centres. ACM Symposium on Operating Sys-

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 75

www.manaraa.com

tem Principles. Published as Operating Systems Review,
35(5):103–116, 2001.

[11] H.-T. Chou and D. J. DeWitt. An evaluation of buffer
management strategies for relational database systems.
International Conference on Very Large Databases, pages
127–141, 21–23 August 1985.

[12] S. J. Daigle and J. K. Strosnider. Disk scheduling for mul-
timedia data streams. SPIE Conference on High-Speed
Networking and Multimedia Computing, February 1994.

[13] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat.
Model-Based Resource Provisioning in a Web Service
Utility. USITS - USENIX Symposium on Internet Tech-
nologies and Systems. USENIX Association, 2003.

[14] L. Eggert and J. D. Touch. Idletime scheduling with pre-
emption intervals. ACM Symposium on Operating Sys-
tem Principles, pages 249–262. ACM Press, 2005.

[15] C. Faloutsos, R. Ng, and T. Sellis. Flexible and adaptable
buffer management-techniques for database-management
systems. IEEE Transactions on Computers, 44(4):546–
560, April 1995.

[16] S. Iyer and P. Druschel. Anticipatory scheduling: A disk
scheduling framework to overcome deceptive idleness in
synchronous I/O. ACM Symposium on Operating Sys-
tem Principles. Published as Operating System Review,
35(5):117–130. ACM, 2001.

[17] W. Jin, J. S. Chase, and J. Kaur. Interposed proportional
sharing for a storage service utility. ACM SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems, pages 37–48. ACM Press, 2004.

[18] M. Karlsson, C. Karamanolis, and X. Zhu. Triage: Perfor-
mance Isolation and Differentiation for Storage Systems.
International Workshop on Quality of Service, pages 67–
74. IEEE, 2004.

[19] P. Lougher and D. Shepherd. The design of a stor-
age server for continuous media. Computer Journal,
36(1):32–42. IEEE, 1993.

[20] C. R. Lumb, A. Merchant, and G. A. Alvarez. Fa-
cade: virtual storage devices with performance guaran-
tees. Conference on File and Storage Technologies, pages
131–144. USENIX Association, 2003.

[21] L. W. McVoy and S. R. Kleiman. Extent-like performance
from a UNIX file system. USENIX Annual Technical
Conference, pages 33–43. USENIX, 1991.

[22] M. Mesnier, G. R. Ganger, and E. Riedel. Object-based
Storage. Communications Magazine, 41(8):84–90. IEEE,
August 2003.

[23] A. Molano, K. Juvva, and R. Rajkumar. Real-time filesys-
tems. Guaranteeing timing constraints for disk accesses in
RT-Mach. Proceedings Real-Time Systems Symposium,
pages 155–165. IEEE Comp. Soc., 1997.

[24] A. E. Papathanasiou and M. L. Scott. Aggressive
prefetching: an idea whose time has come. Hot Topics
in Operating Systems, 2005.

[25] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka. Informed prefetching and caching. ACM
Symposium on Operating System Principles. Published
as Operating Systems Review, 29(5):79–95, 1995.

[26] J. Reumann, A. Mehra, K. G. Shin, and D. Kandlur. Vir-
tual services: a new abstraction for server consolidation.
USENIX Annual Technical Conference, pages 117–130.
USENIX Association, 2000.

[27] J. Schindler, A. Ailamaki, and G. R. Ganger. Lachesis:
robust database storage management based on device-
specific performance characteristics. International Con-
ference on Very Large Databases. Morgan Kaufmann
Publishing, Inc., 2003.

[28] J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Ganger.
Track-aligned extents: matching access patterns to disk
drive characteristics. Conference on File and Storage
Technologies, pages 259–274. USENIX Association,
2002.

[29] P. J. Shenoy and H. M. Vin. Cello: a disk scheduling
framework for next generation operating systems. ACM
SIGMETRICS Conference on Measurement and Mod-
eling of Computer Systems. Published as Performance
Evaluation Review, 26(1):44–55, 1998.

[30] E. Thereska, M. Abd-El-Malek, J. J. Wylie,
D. Narayanan, and G. R. Ganger. Informed data
distribution selection in a self-predicting storage system.
International conference on autonomic computing, 2006.

[31] E. Thereska, B. Salmon, J. Strunk, M. Wachs, Michael-
Abd-El-Malek, J. Lopez, and G. R. Ganger. Stardust:
Tracking activity in a distributed storage system. ACM
SIGMETRICS Conference on Measurement and Model-
ing of Computer Systems, 2006.

[32] Transaction Processing Performance Coun-
cil. TPC Benchmark C, December 2002.
http://www.tpc.org/tpcc/.

[33] Transaction Processing Performance Coun-
cil. TPC Benchmark H, December 2002.
http://www.tpc.org/tpch/.

[34] B. Urgaonkar and P. Shenoy. Sharc: Managing CPU and
Network Bandwidth in Shared Clusters. IEEE Transac-
tions on Parallel and Distributed Systems, 15(1):2–17.
IEEE, 01–01 January 2004.

[35] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource over-
booking and application profiling in shared hosting plat-
forms. Symposium on Operating Systems Design and Im-
plementation, pages 239–254. ACM Press, 2002.

[36] B. Verghese, A. Gupta, and M. Rosenblum. Performance
isolation: sharing and isolation in shared memory multi-
processors. Architectural Support for Programming Lan-
guages and Operating Systems. Published as SIGPLAN
Notices, 33(11):181–192, November 1998.

[37] C. A. Waldspurger. Memory resource management in
VMWare ESX server. Symposium on Operating Systems
Design and Implementation, 2002.

[38] T. M. Wong, R. A. Golding, C. Lin, and R. A. Becker-
Szendy. Zygaria: Storage Performance as a Managed Re-
source. RTAS – IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium, pages 125–134, 2006.

[39] H. Zhu, H. Tang, and T. Yang. Demand-driven Service
Differentiation in Cluster-based Network Servers. IEEE
INFOCOM, pages 679–688. IEEE, 2001.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association76

